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The generation of feeding currents by flagellar motions 
By J. J. L. HIGDON 

Department of Applied Mathematics and Theoretical Physics, University of Cambridget 

(Received 14 December 1978) 

The use of flagella by sessile organisms to generate feeding currents is analysed. The 
organism consists of a spherical cell body (radius A )  to which a smooth flagellum 
(radius a, length L )  is attached radially. The cell body is a height H above the plane 
substrate to which it is rigidly attached via a stalk. The organism propagates plane 
sinusoidal waves (amplitude a, wavenumber k) from base to tip. The flagellum is 
represented by distributions of stokeslets and dipoles along its centre-line. The cell 
body and substrate are modelled by employing an approximate form of the Green’s 
function for the sphere in the half space. The error terms in the model are O(a/L)  and 
O ( A 2 / H 2 ) .  The analysis and method of solution are adapted from Higdon (1979). 

The mean flow rate and power consumption are calculated for a wide range of 
parameters. Optimal motions are determined with the criterion of minimizing the 
power required to achieve a given flow rate. The optimum wave has maximum slope 
in the range 2 < ak < 2.5 (compared to the optimum value ak = 1 for swimming). 
The optimum number of waves N, increases linearly with flagellar length for L / A  > 10 
and is approximately constant, N, = 1, for shorter flagella. The optimum flagellar 
length is in the range 5 < L / A  < 10. There is no optimum flagellar radius a / A .  For 
optimal efficiency, the height H should be greater than or equal to the length of the 
flagellum. 

The optimum values of the parameters are compared to the values for the choano- 
flagellates described by Lapage (1925) and Sleigh (1964). Excellent agreement is 
found between the predicted optima and the observed values. The calculated velocity 
field closely resembles the flow described by Sleigh and Lapage. 

1. Introduction 
Micro-organisms which utilize flagellar motions have been the subject of consider- 

able study by hydrodynamicists. In the past, these studies have concentrated on the 
locomotion of organisms by flagellar propulsion. In  this paper, we consider a quite 
different application: the use of flagella by sessile organisms to generate feeding 
currents. As there is a wide variety of shapes, sizes and flagella among these organisms, 
it is necessary to restrict the present effort to a single class of organisms, the ‘choano- 
flagellates ’ or collar flagellates. These organisms attach themselves to the substrate 
via a long stalk and propagate plane waves down a smooth flagellum to produce the 
desired flow field. The organism ingests food by filtering the stream which passes 
through a collar surrounding the base of the flagellum. Typically, this collar is com- 
posed of a large number of fine filaments called pseudopodia. 
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FIGURE 1. Example o f  a sessile organism showing relative position of  cell body, 
flagellum and plane substrate. 

A general overview of the feeding processes of flagellates is given in Sleigh (1973), 
chapter 5. Lapage (1925) gives a detailed description of a typical collar flagellate and 
the flow field it generates. For a description of the flagellar activity of a variety of 
sessile organisms see Sleigh ( 1964). 

The study of these flow fields from a mathematical viewpoint has been extremely 
limited. Lunec (1975) modelled an isolated flagellum using force coefficients and cal- 
culated the velocity field in the vicinity of the flagellum. A comparison with the flow 
about an actual organism demonstrated the need to adopt a more sophisticated model 
to account for the interaction of the flagellum with the cell body and other boundaries. 
Lighthill (1976) presented a semi-quantitative theory which outlines the role of the 
flagellum in generating the flow field and its dependence on the parameters. 

The representation of the organism employed in this paper is shown in figure 1. 
The filaments which compose the collar of the organism are extremely fine and do 
not actively affect the flow; hence it is assumed that they may be ignored. The cell 
body is treated as a sphere of radius A to which a single smooth flagellum of radius 
a and length L is attached radially. The flagellum propagates plane sinusoidal waves 
from base to tip. The cell body is a distance H above the substrate, to which it is 
rigidly attached via a stalk. As it  is motionless, the stalk has a much smaller effect 
on the flow than the flagellum and is ignored. The substrate is represented as a smooth 
plane surface extending to infinity. 

The characteristic length of the organism is 1Opm and the Reynolds’ number is 
of order The flow is governed by Stokes’ equations. The analysis follows the 
method used by Higdon (1979, hereafter referred to as I) in studying flagellar propul- 
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sion. In that paper, slender body theory was used to show that the flagellum may be 
represented by distributions of stokeslets and dipoles along its centre-line. The pre- 
sence of the spherical cell body and the plane substrate are accounted for by employing 
the Green’s function for the flow external to a sphere in the half space. An approximate 
expression for this Green’s function is constructed from the individual Green’s func- 
tions via the method of reflexions. The errors in the analysis are O(a /L)  for the slender 
body theory and O ( A 2 / H 2 )  for the approximate Green’s function. 

The use of slender body theory and the Green’s function transforms the problem 
into a pair of singular integral equations for the force distributions along the flagellum. 
As in I, these equations are solved by an iteration process. The solution for the force 
distribution is then employed to find the velocity field and the power consumption. 
The parameters for the organism and the wave form are varied to find the optimal 
configuration with the criterion of minimizing the power consumption for a given flow 
rate. 

2. Singularity solutions of Stokes’ equations 

is defined by 

where r = Ix-yJ. 

The fundamental singularity solution of Stokes’ equations is called a stokeslet and 

(1)  Sjk(X,  Y) = Sjk/r+ ( ~ j - ~ j )  (xk -yk ) / r3 ’  

The velocity at  x due to a stokeslet of strength f at  y is 

Physically, this represents the velocity field due to a point force f i n  an unbounded 
fluid. Mathematically, the stokeslet is the free space Green’s function for Stokes’ 
equations. This means that the solution of Stokes’ equations may be expressed in 
terms of stokeslets and their normal derivatives over the boundaries. 

Any derivative of a stokeslet is a solution of Stokes’ equat,ions. This follows imme- 
diately from the linearity of the equations. Thus, it  is possible to obtain singularity 
solutions of any order by taking the appropriate derivative of the stokeslet. The 
gradient of a stokeslet is called a Stokes-doublet. To obtain the Stokes-doublet in 
its standard form, differentiate (1) with the operator a/ayl: 

The Stokes-doublet has tensorial strength vkZ. The velocity due to a Stokes-doublet 
(Tkl at the point y is 

The symmetric component of the Stokes-doublet, represented by the first bracket 
in (3)’ is called a stresslet. The antisymmetric component, represented by the second 
bracket in (3)’ is called a rotlet. The rotlet represents the velocity field due to a point 
torque. 

Among the singularities obtained by taking the second derivative of the stokeslet, 
11-2 
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the most useful is the potential dipole, defined by the Laplacian of the stokeslet. TO 
obtain the dipole in its standard form, differentiate (i) with the operator - 4VE: 

The velocity field for a dipole of strength d a t  y is 

These three singularities, stokeslet, Stokes-doublet and dipole, are the most useful 
singularities in constructing solutions to Stokes' equations. 

3. Image system for a sphere 
In  some problems with special geometry, i t  is possible to find combinations of 

singularities which simplify the solution of the equations by satisfying the boundary 
condition implicitly. The set of singularities in such a case includes the stokeslet, 
as the fundamental solution, plus a collection of image singularities located within 
the boundary, which serve to cancel the velocity of the stokeslet on the boundary. 
The stokeslet plus its images provides an expression for the Green's function for 
Stokes' equations in the region confined by the boundary. 

The Green's function for the flow external to a sphere is 

Gf3j,(x, Y)  = sjk(x7 Y) + .sj*k(x, Y), (71 

where S& represents the image system. 

sphere is given by 
The velocity a t  the point x due to a point force f a t  the point y in the presence of a 

Oseen (1927) gives the expression for S?k when the sphere has its centre a t  the 
origin : - 

A Jj, A3 (xj-y;)(xk-yk*) - ly(2-A2 A s* ( x , y )  = -- 
i k  IYI r* IY13 r*3 
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where A is the radius of the sphere, y* is the inverse point defined by 

A2 
Y* = mzY 

I J  I 
and r* = Ix-y*l. 

The expression for S5L is quite complicated. It can be more easily understood in 
terms of the components of the stokeslet. For the radial component of the stokeslet, 
the images are a stokeslet, dipole and stresslet a t  the inverse point. For the transverse 
component, the images are a line distribution of stokeslets, dipoles and Stokes- 
doublets extending from the origin to the inverse point. 

The total stokeslet strength and rotlet strength give the force and moment on the 
sphere. 

The force and moment for the radial component are 

For the transverse component 

Consider now the problem of finding images for higher-order singularities. The 
function Gsjk defined by (7)  has the property that Gsjk = 0 for 1x1 = A independent 
of y. Thus, DUGsjk = 0 on 1x1 = A for any differential operator D, with respect to 
the variable y. It is important here to distinguish between the free variable x and the 
parametric variable y. 

From this property of Gsjk, the following rule may be formulated. 
If a solution of Stokes' equations is defined by D, Xi, for a differential operator D,, 

the image system in the sphere for the singularity is DUSTk. 
This rule gives a method for finding the images of the Stokes-doublet and dipole. 

In practice, the differentiation of (9) is very difficult. To obtain an approximate 
expression for Si., which will be easily differentiable with respect to  y, consider an 
expansion about the origin for 14 < IyI. The first-order terms are a stokeslet and a 
dipole. For convenience, define 

The second-order terms include a Stokes-doublet and a potential quadrupole. It is 
convenient to  divide these singularities into their symmetric and antisymmetric 
components and thus to define 

and 

With definitions (14), (15) and (16),  the expansion for Xi*, about the origin may be 
written as 

where terms of order O(Az/ Iy 12) are neglected. 
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In  terms of its x dependence, this expression does not appear much simpler than 
(9), but its dependence on y is of a form which is easily differentiated. 

Recall that the Stokes-doublet was defined by (a /ay l )  Xi , .  Applying the rule stated 
above for finding images of higher-order singularities, the image of the Stokes-doublet 
is given by (a /8y l )  #,*,. Differentiating (17) accordingly yields 

Note that the functions F.m, Wsjm, and WAjh are exactly the same as in (17). This 
means that, to any order, the expansions for the image systems of the stokeslet and 
all its derivatives are composed of the same group of singularities. Only the strength 
of the singularities as expressed in the y dependence changes. 

The image system for the dipole is found by calculating - &v&s?k. Differentiating 
(17) yields 

Note that, in this case, there is no W, term, because V ~ ( y ~ / l ~ ~ ~ )  = 0. 
This completes the set of sphere images needed in this problem. 

4. Image system for a plane 
The solution of Stokes' equations in the half space is considerably simplified through 

the use of the Green's function for this domain. As with the Green's function described 
in $ 3 ,  this consists of a stokeslet plus a collection of images which cancel the velocity 
on the boundary. In  this case, the boundary is a plane. 

Let the origin of the co-ordinate system be a distance H from the plane boundary. 
Define the vector p as the unit vector perpendicular to the plane pointing into the 
fluid. A stokeslet a t  y is a distance h(y) from the plane, where 

h(y) = H + y . p .  (20) 

y' = Y - 2MY) P. 

The image point f of y is defined by 

(21) 

The Green's function for the half space is 

where 8 j k  is the image system for the plane. 
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The image system is defined by 

g j k ( x ,  Y )  = - 7) -k 2h(y)pl[6km- 2PkPm1 sBj~m(x, Y’) 
- 2h2(y) 16km - 2PkPml Djm(x, 7). (23) 

This image system consists of a stokeslet, Stokes-doublet and dipole a t  the image 
point $. This is much simpler than the image system for a sphere, as it contains no 
distributed singularities. 

The expression for the image system in (23) was given in a slightly different form 
by Blake (1971). Alternatively, it  can be obtained from (9) as the limit for a sphere 
of infinite radius. 

5. Combined image system 
In this section, the results of $93 and 4 are combined to obtain an approximate 

expression for the Green’s function for the flow external to a sphere in the half space. 
The combined image system is more complicated than the sum of the two individual 
image systems, because it contains terms due to the interaction of the two image 
systems. 

Let the origin of the co-ordinate system be at  the centre of the sphere. The sphere 
has radius A ,  and its centre is a distance H from the plane. As before, the vector p is 
defined as the unit vector perpendicular to the plane pointing into the fluid (see 
figure 1). 

To construct the combined image system, we start with the image systems for the 
plane and the sphere. Each of these image systems cancels the velocity of the stokeslet 
on its respective boundary, but induces a non-zero velocity on the other boundary. 
To cancel this velocity, we add the plane image of the sphere image and the sphere 
image of the plane image. These images, in their turn, cancel the velocity on one 
boundary, but induce a non-zero velocity on the other. Thus, the process must be 
repeated with the images of the next order. 

There is one difference between the plane images and the sphere images which 
make it possible to obtain an approximate expression for the combined image system 
after a finite number of terms. The plane images are a 1a.rge distance O ( H )  from both 
the plane and the sphere and induce a velocity of the same order on both boundaries. 
The sphere images are a distance A from the surface of the sphere, but are a distance 
H from the plane. Thus, an nth-order image singularity in the sphere inducesavelocity 
at the plane order O(An/Hn) with respect to the velocity it induces on the sphere. 
When the sphere images are added to cancel a certain velocity on the sphere, they 
induce a lower-order velocity on the plane; hence, the velocity on both surfaces is 
reduced by a factor AIH at the end of each cycle of plane-sphere reflexions. A second 
result is that, to order O(A2/H2), the calculation of plane images of sphere images need 
consider only the stokeslets in the sphere. 

The first approximation to the Green’s function is the sum of the Stokeslet plus the 
two individual image systems, 

G j k ( X ,  Y )  s j k ( x ,  Y) f s3*k(x,  Y )  + S j k ( X ,  Y ) ,  (24) 

where the terms are defined by (l), (9) and (23) respectively. 
Consider the problem of finding the sphere images of the plane image system S j k .  
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This image system consists of a stokeslet, Stokes-doublet and dipole. Its image in 
the sphere is obtained by replacing each of these singularities with its respective 
image in the sphere. The necessary expressions were derived in § 3. 

The sphere images of the plane images are expressed as 

‘$k(x, Y )  = - S j * k ( x ,  9)  + 2h(? )P l [6km-PkPml  S$jlm(X, g) 
- 2h2(y) [ 6 h - P k ~ m l  DI*m(x, y), ( 2 5 )  

where Si.,, Sgjh and D& are given by ( 1 7 ) ,  (18) and (19) respectively. Note that, in 
this case, the approximate form of Sj., may be used, because the stokeslet is a large 
distance from the sphere. 

Adding ( 2 5 )  to ( 2 4 ) ,  the approximate expression for the Green’s function now haa 
the form +’ 

G j k ( X ,  Y )  s jk (x ,  Y )  + STk(x ,  Y) + S j k ( X ,  Y) + f i j k ( X ,  Y ) .  (26 )  

This expression satisfies the boundary condition on the sphere to O(Aa/H2) ,  but 
the velocity a t  the plane boundary is O ( A / H ) .  This velocity is due to terms in S& 
and 8 j k  whose plane images have not been considered. The leading terms of these 
functions are stokeslets a t  the origin of the form 

- fASkZ(O, Y )  Sj l (x ,  0) - f A f i k l ( O ,  Y) sj,(x, O ) .  ( 2 7 )  

Since these terms are merely stokeslets, their images in the plane are obtained by 
replacing Xj,(x, 0)  with sjz(x, 0).  Thus, the plane images of ( 2 7 )  are expressed as 

- $Askdo, Y)&jdXt 0) - fA&z(O, Y )  f i j , ( X ,  0). (28)  

The addition of this term to (26) corrects the velocity on the plane, but induces a 
velocity on the sphere O ( A / H ) .  To cancel this velocity, the sphere image of ( 2 8 )  
must be added. This is obtained by replacing Bjr(x, 0 )  with Sjt(x, 0 )  to yield 

- gAskdo, Y) jjdX? O )  - f A S k , ( O ,  Y) jjI(x, O ) .  (29)  

Adding ( 2 8 )  and (29) to the Green’s function (26) gives the following expression for 
the combined Green’s function, 

* 
G j k ( X ,  Y) = sjk(x, Y )  + s T k ( x ,  Y )  + S j k ( X ,  Y) f f l j k ( X ,  Y )  

- [skdO, Y) f Y)] [sjZ(x, O )  + i j l (x~ O)l*  (30) 

This expression is a solution of Stokes’ equations which includes the fundamental 
solution and satisfies the boundary conditions on the sphere and plane to O(A2/H2).  
Therefore, it  is the correct expression for the combined Green’s function to O(A2/H2).  

The velocity at x due to a stokeslet of strength f at y in the presence of a sphere 
in the half space is 

uj(x) = G j k ( x ,  Y ) f k / 8 T f i .  (31) 

6. Velocity induced by singularity distributions 
The application of slender body theory to problems involving flagellar motions was 

described in I. The principal result is that the flagellum may be represented by dis- 
tributions of stokeslets and dipoles along its centre-line. To satisfy the boundary 
condition on other surfaces, the stokeslet is replaced by the Green’s function applicable 
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to the geometry of the problem. For the current problem, the stokeslet is replaced 
by the Green’s function (30) derived in 8 5. 

Let the origin of the co-ordinate system be a t  the centre of the sphere. The relative 
positions of the sphere and plane are as previously specified. The shape of the flagellum 
is specified by a function X(s), where s is the arclength measured from the point at 
which the flagellum meets the sphere. 

The velocity induced by the singularity distributions along the flagellum and their 
images is given by 

L 

uj(x) = 1 [ G j k ( X ,  x(s))fkO + Djk(X, x(s)) 4n dk(S)]  as, (32) 
0 a ? v  

where f and d are the stokeslet and dipole strengths and the integration extends along 
the flagellum. The functions Gjk and D ,  are defined by (30) and (5) respectively. 

It was shown in I that the dipole strength is determined by the component of the 
stokeslet normal to the centre-line. In particular 

where T is the unit vector tangent to the flagellum, and a is the radius of the flagellum. 
It is convenient to divide the Green’s function Gik into two terms: the stokeslet 

S,, and the image system 8%. 
The function 8% represents the sum of all the image terms derived in 5 5 and may 

be defined as 

where G,k and 8 j k  are given by (30) and (1). 

Y) = G j k ( X ,  Y) - s j k ( x ,  Y), (34) 

The induced velocity may now be written in the form 

This integral is evaluated by dividing the flagellum into N intevals in which f is 
assumed constant. The image system 8% is singular inside the sphere and a t  the image 
points in the plane, but it is well behaved along the flagellum. Thus, it  may be inte- 
grated easily by numerical methods. 

Let the nth interval have midpoint s, and length 28sn. The integral of 88 in this 
interval is designated: 

with the understanding that the integral is evaluated numerically. 
The functions 8 j k  and D j k  in (35) may be integrated analytically. Using (33) to 

eliminate d and employing the results of the integrations, the induced velocity may 
be written in the form 

N 

n=l 
uj(x) = { [ K J k ( X ,  x(sn)) + H j k ( x ,  x ( s n ) ) l f k ( s n ) ) ,  (37) 

where f k ( s n )  is the value off in the nth interval, and K,, represents the terms integrated 
analytically. The exact expression for Kik is given in I, equation (27). 

The expression (37) gives the velocity induced by the singularity distributions 
along the flagellum and their images in the plane and the sphere. 
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7. Kinematics of flagellar motion 
In  this section, we consider the specification of the shape of the flagellum and the 

determination of the velocity of points on the flagellum. We assume that the shape 
of the flagellum as a function of time is given in the form 

( X ,  y ,  2) = ( X ,  Y ( X ,  t ) ,  0). (38) 

Let the point of contact of the flagellum with the cell body be X,. The arclength 
s measured from the base of the flagellum at X, is given by 

It has been assumed that the flagellum is inextensible. Thus, the velocity of a point 
on the flagellum is given by 

(40) 
a 

U = - X ( 8 , t ) .  at 

When the shape of the flagellum is expressed in the form (38), this expression 
cannot be evaluated directly. Instead, the chain rule for partial differentiation is used 
to obtain the velocity in the form 

(41) 
ax(8, t )  a ~ ( x ,  t )  a ~ ( x ,  t )  ax(8, t )  ( at 2 at + ax u =  - 

The derivative aX/at may be evaluated by applying the rule for differentiating 
implicit functions to (39) to yield 

The velocity of points on the flagellum is given by (41) and (42) when the shape of 
the flagellum is given in the form (38). 

At this point, it is necessary to specify the wave form to be used in the present 
problem. As mentioned previously, the observed wave forms are approximately 
sinusoidal. Consider first a wave of the form 

(43) Y ( X ,  t )  = a sin [ k ( X -  X , )  + $ ( t ) ] .  

This wave has constant amplitude and wavenumber, with unspecified time de- 
pendence. If a wave of this form is employed, the condition that the flagellum is 
attached to the cell body radially cannot be satisfied. To overcome this difficulty, 
the amplitude of the wave is modified by the function 

E(z )  = 1 -exp [ - (ks z )9 .  (44) 
This function has the properties that E(0)  = 0, E’(0) = 0 and E(s)  grows very 

Multiplying (43) by E ( X  - X , )  yields a sinusoidal wave of the form 
rapidly to its asymptotic value E(m) = I.  

Y ( X ,  t )  = E ( X  - X , )  asin [k(X - X, )  + $ ( t ) ] .  (45) 
This wave has a small ‘end region’ in which its amplitude grows very quickly, 

after which it forms a constant amplitude, constant wavenumber sine wave. 
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The functional form of $( t )  which most closely approximates the actual waves used 
by organisms is a matter of some uncertainty. It is relatively easy to obtain the 
function Y ( X )  from photographs of the organism, but it is more difficult to obtain 
accurate information regarding the form of $(t) .  

In the present work, we assume that $( t )  is of a form such that the fully developed 
wave has constant curvilinear wave speed c .  This type of wave has often been used 
in studying locomotion and is consistent with the waves employed in I. 

For the fully developed wave to have constant curvilinear wave speed c,  we require 
that Y (s, t )  be of the form Y ( s  - ct) when s (or X )  is large. This condition is expressed: 

lim - Y(s , t )  = 
s+m ( a  at 

To find $ ( t ) ,  we convert these derivatives to functions of s, X and $. 
Applying the chain rule to the left-hand side yields 

a ay(x, $1 a m s ,  t )  + avx, $1 - d$ 
ax at a$ d t ’  - Y(8,t) = 

at 

aY(x, $) ax@, $) I a Y ( X ,  4) 3 
and further 

[ ax a$ a$ 1 dt‘ 
a 
- Y ( s , t )  = 
at 

From (45) we note that 

and hence from (48). 

Applying the chain rule to the right-hand side of (46) yields 

Taking the limit and employing (49) yields 

Equating (50) and (52) gives an expression for d$/dt,  

(-kc+ ax(s 

(47) 

(48) 

(53) 

Equation (53)  gives d$/dt as a function of $. Choosing initial condition $ = 0 at 
t = 0 and integrating gives Q, in the implicit form 
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The period of the wave T is defined by 

After making substitutions from (45) and (53), this can be written in the form 

This expression is merely a statement of the fact that the period equals the curvilinear 
wavelength divided by the curvilinear wave speed. The linear wavelength h equals 
2n/k, and the linear wave speed V equals h/T. 

This completes the specification of the flagellar motion. 

8. Solution of equations 
The boundary condition on the flagellum requires that the induced velocity (37) 

equal the velocity of the flagellum (41). The induced velocity (37) depends on the 2N 
values of f(sn). To obtain a system of 2N equations, the boundary condition is imposed 
a t  the centre of each segment of the flagellum. The resulting equations are of the 
form 

N 

where u(X(s,)) is the velocity of the flagellum at the midpoint of the mth segment, 
and the summation gives the induced velocity at  that point. 

At an instant of time, (57) represents a system of 2N linear algebraic equations in 
the 2N unknowns, f(sn). This system of equations is solved by an iteration process. 
To rewrite (57) in a more convenient form, we make the following definitions: 

&jk(%, Sn) = K j k ( X ( s m ) ,  x(sn)) +Hjk(X(sm) ,  x ( sn ) )  (58) 
N 

and 

The boundary condition (57) may now be written in the form 

N 

Multiplying (60) by the inverse of P j k  and rearranging yields 

(59) 

This expression is used to define the iteration process. The right-hand side of the 
equation depends on the previous values off, while the left-hand side defines the next 
iteration. This process converges to yield a solution for f at an instant of time. 

The purpose of the flagellar motion is to produce a flow which is filtered by the collar 
of the organism to extract food particles. To determine the optimal flagellar motion, 
we require a measure of the effectiveness of this process. The average flow through the 
collar is the most logical measure of the flow rate, but this quantity is difficult to 
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evaluate. Instead, we choose a simpler measure - the average flow through a disk 
tangent to the surface of the sphere at  the point of contact of the flagellum. For a 
disk of the proper radius, this quantity is identical to the flow through the collar. 
The radius of the disk is chosen to be twice the radius of the cell body, a size which 
corresponds roughly to the effective area of the collar. 

The average flow rate through the disk is 

where p is the unit vector perpendicular to the disk (and to the plane), u is the in- 
duced velocity, and the integration extends over the area of the disk. The flow rate 
U is analogous to the swimming speed of an organism employing its flagellum for 
locomotion. A disk moving through the fluid a t  speed U would be equivalent to a 
flow rate U. In  addition to the flow rate, we need to know the power consumption of 
the organism. The instantaneous power is given by 

where u is the velocity of the flagellum, f is the force distribution and 2Ssn is the 
length of the nth segment of the flagellum. 

The flow rate and power consumption defined by (63) and (63) respectively are the 
instantaneous values of these quantities. To obtain the time average of the quantities, 
the equations must be solved at  several points in the cycle of the wave, and the results 
used to evaluate the expressions 

= '1' U(t)dt and H = 
7 0  

(64) 

The number of points required in the various summations and details of the com- 
puting are given in the appendix. 

9. Results 
In this section, we examine the dependence of the flow rate and power consumption 

on the parameters. The dimensions of the organism determine the three body para- 
meters: a / A ,  L / A  and H I A ,  where a is the flagellar radius, L is the flagellar length, 
A is the cell body radius and H is the height of the cell body above the plane substrate. 
The shape of the wave is specified by the three wave parameters: Nh, ak and k/k,. 
Nh is the number of linear wavelengths on the wave; the other parameters are as they 
appear in (44) and (45). 

The average flow rate is non-dimensionalized in the form G / V ,  where V is the 
average linear wave speed. The power consumption is non-dimensionalized as 

7-l = H / ~ ~ T , L L A P .  (65) 

This expression gives the power required to produce R given flow rate. Its minimum 
occurs at  the optimal combination of the parameters, hence it is called the inverse 
efficiency. 
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FIGURE 2. Average flow rate as a function of number of waves, Nh, for three different length 
flagella, radius a / A  = 0.02. (Height H / A  = 10. Wave parameters: ak = 2, k / k E  = 1.) 
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FIGURE 3. Power consumption in the non-dimensional form (65) as a function of number of 
waves, N,, for three different length flagella, radius a / A  = 0.02. (Height H / A  = 10. Wave 
parameters: ak = 2, k / k E  = 1.) 
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FIGURE 4. Average flow rate as a function of ak for three different length flagella with radius 
a / A  = 0.02. (Height H / A  = 10. Wave parameters: optimum N A ,  k / k E  = 1.) 

I n  the following discussion, variation of the wave parameters is considered first, 
followed by variation of the body parameters. 

The average flow rate as a function of N, is shown in figure 2. The curves are plotted 
for three different length flagella with fixed values for the other parameters. For 
motions in which the entire flagellum forms only a fraction of a wavelength (NA < 1))  
the flow produced is very irregular, and the net flow over the cycle is small. As the 
number of wavelengths increases, the flow becomes more uniform, and the average 
flow rate increases. The maximum flow rate U /  V is produced a t  NA = 1 for LIA = 10. 
For longer flagella, the value of N, for maximum flow rate increases linearly with the 
flagellar length. For shorter flagella, the maximum flow occurs a t  a value of NA mar- 
ginally less than l .  The slow decline in flow rate for Nh greater than its optimum value 
is due t o  interference with the cell body. The velocity induced by the flagellar motion 
is concentrated within the envelope of the wave. As the number of wavelengths is 
increased, the amplitude of the wave decreases, and the flow is confined to LL column 
of smaller diameter. The axis of this column passes through the centre of the sphere. 
Thus, as the flow becomes more concentrated along the axis, the interference with the 
cell body becomes greater. The optimum NA increases linearly with flagellar length, 
because this rate of increase holds the diameter of the column constant. 

The non-dimensional power 7-1 as a function of NA is shown in figure 3. The actual 
power P increases slowly with N,, because increasing the number of wavelengths 
decreases the ratio hla. As shown in the analysis of locomotion in I, the effectiveness 
of the flagellar motion depends on this ratio being large. Despite the gradual increase 
in power, the behaviour of 7-l in figure 3 is dominated by its dependence on the flow 
rate U. Thus, the optimum value of N, is very close to the value which yields the 
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FIG- 6 .  Power consumption (65) aq a function of ak for three different length flagella with 
radius a / A  = 0-02. (Height H / A  = 10. Wave parameters: optimum Nh,  k / k E  = 1.) 
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FIU~RE 6. Average flow rate as a function of k / k E  for three different length flagella with radius 
a/A = 0.02. (Height H / A  = 10. Wave parameters: optimum NA and ak . )  
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FIGURE 7.  Power consumption (65) as a function of k / k E  for three different length flagella with 

radius a / A  = 0.02. (Height H / A  = 10. Wave parameters: optimum Nh and ak.) 

maximum flow rate. The optimum value is Nh = 1 for L / A  = 10. For L / A  > 10, the 
optimum value of Nh increases linearly with L / A .  For L / A  < 10, the optimum number 
of wavelengths is marginally less than 1 .  

The flow rate as a function of ak is shown in figure 4. This parameter equals the 
maximum slope of the wave: the higher ak, the steeper the wave. In  each case, the 
velocity increases nearly linearly with ak. This is in contrast to  the behaviour for 
locomotion, for which the swimming speed levels off at a value of ak z 2 .  The difference 
is due to  the fact that  the sessile organism is anchored to the substrate. In  the case of 
locomotion, the increased thrust a t  higher ak is cancelled by the increased drag on 
the flagellum. I n  this case, the drag on the flagellum does not affect the flow rate 
directly, but only through its effect on the force distribution. Thus, the flow rate does 
not level off until the wave is much steeper. 

The power consumption 7-1 as a function of ak is shown in figure 5 ,  The optimum 
value of ak is approximately 2.5 (ak = 2 for the shortest flagellum, L / A  = 5 ) .  The 
decrease in 7-1 leading up to the optimum ak is due to the increase in flow rntc as ak 
increases. The slow increase in 7-1 for ak larger than the optimum is due to inter- 
ference between neighbouring waves. There is a fundamental difference between this 
type of interference and that which occurs in locomotion. I n  locomotion, the primary 
cause of interference is the resistance encountered by a segment of the flagellum as 
it moves through the flow generated in the flow direction by other segments of the 
flagellum. I n  the sessile case, the points on the flagellum have negligible velocity in 
the wave direction. They move across the induced flow and do not experience an 



322 J .  J .  L. Higdon 

0.06 

I I I I I 
0 0.0’ 0.04 0.06 0.08 I 

u lA 

I 

10 

FIGURE 8. Average flow rate as a function of flagellar radius for three different length flagella. 
(Height H / A  = 10. Optimum values for wave parameters.) 

increase in power consumption as a result of increased flow in the wave direction. 
As the wave becomes very steep (ak > 3), the interference due to transverse flow 
becomes significant, because alternate segments of the flagellum travel in opposite 
directions across the flow. This type of interference does not occur until the wave is 
much steeper; hence, the optimum slope for the sessile organisms is much higher than 
for locomotion. 

The flow rate as a function of klk, is shown in figure 6. The parameter klk, is a 
measure of the distance required for the wave to reach its maximum amplitude. 
The flow rate has its maximum at klk, = 0, and decreases monotonically as k/k, 
increases. This occurs because the amplitude of the wave in the vicinity of the cell 
body decreases exponentially with k/k,. The decrease in velocity is gradual over the 
range of k/k, considered, but the velocity decreases much more rapidly for higher 
values of k/k,. For these values, the amplitude of the wave is diminished over a 
large part of the flagellum. This does not correspond t o  observed wave forms, and the 
flow rate for these values is not shown. 

The power consumption 7-1 as a function of klk, is shown in figure 7 .  The behaviour 
is consistent with figure 6. That is, 7-1 increases as klk, increases due to the decreasing 
flow rate. Once again, the change is gradual over the range considered. Thus, we 
conclude that the optimum motion is relatively insensitive to the exact form of the 
wave a t  its junction with the cell body. 

At this point, i t  is worthwhile summarizing the results for the wave parameters. 
The optimum number of waves on the flagellum is found to be directly proportional 
to  the length of the flagellum when LIA >, 10, with an optimum value NA = 1 a t  this 
length. For shorter flagella, the optimum NA is approximately 1. For the longer 
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FIGURE 9. Power consumption (65) as a function of flagellar radius for three different length 
flagella. (Height H / A  = 10. Optimum values for wave parameters.) 
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FIGURE 10. Average flow rate as a function of flagellar length. (Radius a / A  = 0.02, 
height H / A  = 10. Optimum values for wave parameters.) 
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FIGURE 1 1 .  Power consumption (65) as a function of flagellar length. (Flagellar radius 
a / A  = 0.02, height H / A  = 10. Optimum values for wave parameters.) 

flagellum, this yields a constant ratio of curvilinear wavelength A to cell body radius 
A irrespective of the length of the flagellum. The optimum value of ak is in the range 
2 < ak < 2.5, which means t'hat the slope of the wave is much steeper than the slope 
for optimal swimming. The combination of the optima for NA and crk yields the result 
that  the optimum amplitude is approximately equal to the radius of the disk through 
which the flow is measured. Finally, the efficiency of the motion is relatively insensitive 
to  the value of klk,. 

Consider now the dependence of the flow rate and power consumption on the body 
parameters. Figure 8 shows the flow rate as a function of flagellar radius. The velocity 
increases monotonically as the radius increases. This is to  be expected, because the 
thicker flagellum has a greater effect on the flow. The increase is gradual, because the 
dependence on a is logarithmic. 

The dependence of 7-l on flagellar radius a / A  is shown in figure 9. The non- 
dimensional power consumption r-1 shows negligible variation, because the increased 
power required to  move the thicker flagellum is offset by the increased flow. Thus, 
there is no optimum flagellar radius. 

The flow rate as a function of flagellar length is shown in figure 10. The velocity 
increases monotonically with increasing flagellar length. The increase in U l V  is very 
rapid up to L / A  = 10, after which it levels off and shows little increase. The addition 
of extra flagellar length past L / A  = 10 has little effect, because the extra length is 
far from the cell body, and thus has less influence than segments of the flagellum 
closer to the cell body. 
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FIGURE 12. Average flow rate as a function of height for three different length flagella 
with radius a / A  = 0.02. (Optimum values for wave parameters.) 

The power consumption as a function of flagellar length is shown in figure 11.  
There is a pronounced minimum a t  L/A  = 7. For flagella shorter than this, the 
entire length of the flagellum is too close to the cell body to work efficiently, because 
the presence of the cell body interferes with the induced velocity. For flagella much 
longer than the optimum length, the power required is much greater, but the flow 
rate increases only slightly as it approaches its limiting value. Thus, 7-l increases 
linearly with L / A  for long flagella. 

The final parameter to consider is the height of the cell body above the substrate. 
The flow rate as a function of H/A is shown in figure 12. The velocity is nearly con- 
stant for values of H/A greater than 10. When the height is less than this value, the 
velocity decreases slowly until H/A = 5 ,  and then falls more rapidly. The effectiveness 
of a segment of the flagellum is determined by the ratio of its distance from the cell 
body to its distance from the substrate. For the shortest flagellum (L /A = 5 ) ,  the 
flow rate decreases a t  a slower rate as H/A decreases, because all segments of the 
flagellum are proportionately closer to the cell body. Similarly, the velocity for L/A  = 

10 decreases more slowly than the velocity for L / A  = 20. As a rough rule, it may be 
stated that the velocity changes negligibly when the height of the cell body is greater 
than the length of the flagellum. 

The power consumption as a function of HIA is shown in figure 13. The actual 
power B changes very little over the range of HIA; hence the behaviour of 7-l is 
determined primarily by the flow rate. This means that 7-1 increases rapidly when 
the height above the substrate is less than the length of the flagellum and shows negli- 
gible variation when the height is greater than the length of the flagellum. 

To summarize the results for the body parameters, we find negligible change in the 
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FIQrJRE 13. Power consumption as a function of height for three different length flagella 
with radius a / A  = 0.08. (Optimum values for wave parameters.) 

power consumption g-I as a function of a . / A ;  hence there is no optimum flagellar 
radius. The optimum length of the flagellum is L/A = 7, with little change in the 
range 5 < L/A  < 10. There is no optimum height H / A ,  because the power consump- 
tion decreases monotonically with increasing height; however, g-l shows negligible 
change when the height is greater than the length of the flagellum. Thus, H = L may 
be taken as a lower limit for an efficient organism. 

The preceding discussion has considered the dependence of the flow rate and power 
consumption on the parameters with the aim of determining the optimum values of 
the parameters. We now consider, in more detail, the flow generated by a single organ- 
ism with dimensions and wave form approximating the optimal configuration. The 
organism has flagellar radius a/A = 0.02, length LIA = 10 and height above the 
substrate H / A  = 10. The wave consists of a single wavelength Nh = 1, with ak = 2.5 
and klk, = 1.  

To examine the magnitude of the induced velocity, we consider the flow through 
the plane tangent to the cell body a t  the point of contact with the flagellum (which is 
parallel to  the plane substrate). Figure 14 shows the velocity as a function of radial 
distance. The velocity shown is the average velocity around the edge of a~ disk of the 
specified radius, plotted at two points in the cycle and for the cycle average. The 
velocity increases rapidly with distance as the presence of the cell body becomes less 
important. It reaches a peak in the range 1-5 < RIA < 2, and then falls off inversely 
with radial distance. The peak velocity is reached a t  a distance approximately equal 
to the amplitude of the wave. There is a great variation in the magnitude of the 
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FIGURE 14. Instantaneous velocity as a function of radial dist.ance for two points in the cycle 
and for the cycle average. (Flagellar length L / A  = 10, radius a / A  = 0.02, height H / A  = 10. 
Optimum values for wave parameters.) 

velocity during the cycle. This effect is amplified by the fact that  the velocity is 
evaluated a t  the base of the flagellum. If the velocity were evaluated over the surface 
of the collar, the flow would be more uniform over the cycle. 

The major conclusion to  be drawn from figure 14 is that  the radius of the disk 
should be approximately equal to the amplitude of the wave. If the disk is smaller 
than this, i t  will be too close to the cell body to benefit from the full flow field. If it 
is much larger, i t  will extend into regions in which the velocity is much less than its 
peak value. This conclusion is the converse of the result that the optimum amplitude 
should equal the radius of the disk. It confirms this conclusion and shows the strong 
interdependence of these two parameters. 

Finally, we look a t  a picture of the overall flow field in figure 15. Each line segment 
shows the direction of the time average velocity at that  point. The magnitude of the 
velocity is inversely proportional to distance from the flagellum. Basically, each line 
segment shows the trajectory that a particle follows over the course of the cycle. 
Ideally, these lines should be drawn with their length proportional to the magnitude 
of the velocity; however, this would greatly reduce the clarity of the diagram. The 
segments close to the flagellum do not represent trajectories, because the velocity 
changes very rapidly as a function of both time and position. 

We see that the fluid is drawn into the centre along the bottom, forced up past the 
organism and continues to  move up and outward above the organism. At a height 
above the plane approximately level with the end of the flagellum and a t  a similar 
distance to each side of the organism is the centre of a large vortex. The fluid near 
the centre of each vortex remains a t  the centre over the course of several cycles. On 
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FIGURE 15. Flow diagram showing direction of particle motion. Wave propagates from base to  
tip. Flow is away from wall along central axis. Each line segment shows tlie direction of the 
time average velocity at that point. With the exception of points very close to the flagellum, 
thQ lines show the trajectories particles will follow. 

the other hand, the cell body is in the centre of a stream which is constantly re- 
freshed by fluid drawn in from infinity. This is essential for the feeding process to be 
successful. 

10. Comparison with observations 
The purpose of this study has not been to examine the detailed motion of any specific 

organism, but rather to determine the relative importance of the different paramehrs 
and, where possible, to find optimum values for the parameters. Nevertheless, the 
study would be incomplete without some comparison with observations of actual 
organisms. 

As a particular case, we consider the choanoflagellate Codonosiga. This organism 
is one of the few choanoflagellates for which detailed information is available con- 
cerning the flagellar wave form and organism dimensions. The flagellar activity and 
fluid flow field for Codonosiga have been described by Lapage (1925) and Sleigh 
(1964). 

In comparing the observations of Codonosiga with the results of this paper, we 
note two points on which the model and the actual organism differ. The first is the 
presence of hair-like appendages on the surface of the flagellum which are not con- 
sidered in the model. Brennen (1976) studied the effect of surface hairs on the hydro- 
dynamics of flagellar motion. He considered two distinct cases. For flagella with rigid 
surface hairs, the flow field is profoundly changed and the direction of flow is reversed 
compared with the flow produced by smooth flagella. For flagella with flexible hairs 
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which bend with the flow, Brennen concluded that the hydrodynamic effect was 
negligible. The surface hairs of Codonosiga are of this second type, hence they are 
ignored. 

The second point on which the model and the organism differ concerns the flagellar 
wave form. The organism employs a non-sinusoidal wave which might be more 
accurately represented by arcs and lines. The variation of the parameter klk, in 
figures 6 and 7 shows the changes in flow velocity and power consumption which may 
be expected in going from a sine wave to a more general wave of similar shape. We 
conclude that the changes are insignificant in determining optimal parameter values, 
but may be significant if accurate values of the flow velocity and power consumption 
are required. Thus, we may compare the predicted optima with the observations by 
using the parameters of the sine wave which most closely approximates the actual 
wave. 

To compare the values of the parameters, we consult Sleigh to  obtain approximate 
dimensions: A = 5pm,  L = 25-30pm7 h = 15-20pm, H = 20-100pm. From the 
tracing of the wave form, approximate values for N ,  and ak are: N ,  = 1-1.5 and 
uk = 2. If we compare these dimensions with the predicted optima, we find that the 
observations are generally consistent with predictions. I n  particular, the observed 
value LIA = 5-6 agrees with the predicted optimum range 5 < L/A < 10. The 
observed height gives H / L  = 0-7-4, compared with the prediction that the minimum 
height should be approximately equal to the flagellar length. The observed wave 
parameters N ,  and k show excellent agreement with the predicted optima, N ,  = 1 
and 2 < ak < 2.5 for this length flagellum. 

An additional comparison of the model and the observations can be made by 
examining the flow field. The qualitative description of the flow field given by Sleigh 
and the schematic diagram shown by Lapage closely resemble the calculated flow 
field shown in figure 15. This confirms the validity of the assumptions made in com- 
paring the results of the model with the observations of Codonosiga. 

The comparisons made in this section support the predictions made in $ 9  and 
demonstrate the value of this model in studying organisms such as Codonosiga. 
We emphasize that the model is not restricted to  sinusoidal waves, and that any 
wave form may be considered, whether it is expressed analytically or numerically. 

I wish to  thank Professor M. J. Lighthill for his helpful comments and suggestions. 
I acknowledge the support of the National Science Foundation through the Graduate 
Fellowship Program. 

Appendix. Computing 
The numerical procedures used in this paper divide the flagellum into N segments. 

All segments were of equal length with the exception of the segments a t  the ends, 
which were chosen to  be not less than twice the diameter of the flagellum. All calcu- 
lations were performed using IBM 370 double precision to avoid errors in dealing 
with large numbers whose difference is very small. The large matrices were stored as 
single precision to  save storage space. 

The iteration procedure converged with an error of less than 1 yo after four iterations. 
The iteration was carried further to  ascertain that this was a true convergence. 
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The number of segments required varied according to the values of the wave para- 
meters; but, for a typical case, 20 segments per wavelength produces an error of less 
than 1%. 

The equations were solved at four points in the half cycle of the wave to determine 
the flow rate and power consumption with an error of less than 1 yo. 

For a wave with the flagellum divided into 40 segments, the calculations for the 
complete cycle required approximately 20 s of IBM 370 CPU time. 

To test the accuracy of the image systems, the velocity was evaluated at several 
points on the boundaries. The exact expression for the Green’s function was compared 
to its far-field expansion, and the Cartesian expression was checked against the 
simpler result for the radial component. 

To test the accuracy of the solution, the calculated velocity was compared with the 
velocity of the flagelliim at points along the flagellum. Comparisons were made with 
asymptotic results based on force coefficients. 
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